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AbstractÐDuring the processing of particulate materials in rotary kilns and driers the transverse
motion generated in the bed is the primary factor controlling renewal of material at the exposed bed
surface. The rate of surface renewal, in turn, determines the degree of material mixing and the rate of
heat transfer from the freeboard to the bed. An experimental campaign launched to investigate granular
¯ow behavior in a transverse plane of a rotary cylinder suggests that a continuum model based on the
constitutive equations developed for gravity ¯ow in chutes may be adopted, in some particular cases, to
describe ¯ow in the shear (active) layer. A model is developed in which the dimensions of the shear
layer, the region near the free surface, is assumed thin thereby permitting the governing equations to
reduce to Prandtl's boundary layer equations which are solved to obtain the depth and velocity pro®les
within the layer. Because the density at the free surface is discontinuous for the ¯ow regimes of practi-
cal interest, the continuum assumption breaks down at the free surface, hence, a stress-free boundary
condition has been avoided. In place of this a surface velocity constraint from the experimental cam-
paign has been applied which, therefore, makes the model de®cient in exploring the full potential of the
boundary layer analogy. Nevertheless, the appropriate velocity trends are predicted well into the bed
with the results comparing favorably with experimental data. # 1998 Published by Elsevier Science
Ltd. All rights reserved

Key Words: rotary kilns, transport phenomena, granular ¯ows, granular temperature and granular dif-
fusion

1 . INTRODUCTION

The Processing of granular materials in rotating drums is a common industrial practice. One
prominent example is the rotary kiln which is employed by industry to carry out a wide variety
of processing operations; for example calcining of limestone, reduction of oxide ore, clinkering
of cementitious materials, waste incineration, calcining of petroleum coke, to cite but a few.
This widespread usage can be attributed to many factors the most prominent being the ability
to handle varied feedstock; for example slurries or granular materials having large variations in
particle size. Because of its industrial importance the rotary kiln has been the subject of numer-
ous investigations. However, only a portion of this work has focussed on determining conditions
within the bed. Thus, one avenue from which signi®cant improvements in kiln performance
might be derived is the development of a more quantitative understanding of transport phenom-
ena within the bed material; speci®cally the role of momentum transport in determining the par-
ticle motion and that of kinetic energy in determining mass and energy di�usion rates. The
present work focuses on the development of a model for predicting the ¯ow of particulate ma-
terials in the transverse plane of a rotating drum of which the rotary kiln is but one example.

The transverse bed motion established in rotating drums will depend on rotation rate and the
degree of ®ll (the portion of the drum cross-section occupied by bed material) and rheology of
the particles. Several overall modes of bed motion have been identi®ed; namely, slipping, slump-
ing, rolling, cascading, cataracting and centrifuging (Henein et al. 1983a,b). Because of the need
to promote good mixing of the particles along with rapid renewal of the exposed bed, the most
desirable condition for industrial operations is usually the rolling mode, details of which are
shown in ®gure 1. In this mode the bed material is characterized by two distinct regions; (1) the
relatively thin active layer which is formed as granular material ¯ows downward from the apex
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to base, and, (2) the much thicker passive (plug ¯ow) region where the material is carried
upward by the rotation of the drum. Therefore the energy imparted by the drum rotation is con-
tinuously fed into the plug ¯ow region as potential energy which is subsequently dissipated by
the vigorous interaction of particles within the active layer.

Particle velocity measurements and observations (Boateng and Barr 1997) have shown that
the active layer ¯ow encountered in rolling beds is similar, in some respect, to gravity ¯ow in
chutes. This work further showed that within most operational modes shearing and non-shear-
ing regions can co-exist within the same ¯ow ®eld, thereby, indicating that stress generation may
comprise a combination of static, streaming and collisional terms with the extent of each contri-
bution depending upon material rheology and drum rotation rate. This suggests that limited ap-
plication of the constitutive equations developed for cohesionless granular materials (see for
example Lun et al. 1984; Johnson and Jackson 1987) is possible. Although other theories exist,
for example plastic formulations (see, for example Mandl and Luque 1970) may be applicable

Figure 1. (a) Rolling bed motion: top planeÐactive (shear) layer; bottom planeÐplug ¯ow (non-shear-
ing) region; (b) model calculation domain.
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to some extent, they have not been widely tested for continuously shearing granular materials.
The impetus here was to adopt speci®c aspects of the constitutive equations developed by Lun
et al. (1984) and Johnson and Jackson (1987) for the boundary conditions appropriate to rotat-
ing cylinders at high shear rates. The resulting model predicts bulk ¯ow behavior upon which
rotary kiln thermal process models can draw (Boateng and Barr 1996a,b); these include: (i) the
velocity ®eld, (ii) the active layer depth, (iii) granular temperature, de®ned as the kinetic energy
per unit mass in random motion of particles (Zhang and Campbell 1992), and (iv) mass di�u-
sion.

2 . MODEL OVERVIEW AND ASSUMPTIONS

The domain for which we seek a solution to the ¯ow problem is depicted in ®gure 1. As is
seen, the active layer is separated from the plug ¯ow region by an interfacial boundary which is
a few particles away from the zero velocity line. In the plug ¯ow region particles rotate with the
wall in a rigid body motion and the strain rate there is zero. Because of this rigid lattice beha-
vior the no slippage requirement may be imposed within the plug ¯ow region; therefore the vel-
ocity there is a linear function of radius, u = or, and hence a solution for the ¯ow ®eld is only
required for the active layer. Particulate ¯ow within the active layer is rather complex and may
involve all aspects of granular ¯ow. Since the location of the interface between the plug ¯ow
region and the active layer is not known a priori to decouple the two ¯ow streams one of the
tasks of the model was to allow prediction of its position and hence to determine the active
layer depth.

The principle assumptions necessary to model the ¯ow were limited to the following:

(i) Particles are cohesionless, spherical, rigid, and slightly inelastic (for example, polyethylene
and perhaps some processing materials).

(ii) The active layer is considered to be thin relative to the bed depth. This assumption is sup-
ported by depth probing experiments (Boateng 1993) in which the ratio of the active layer
depth at mid-chord to the chord length was found to be less than 0.04.

(iii) The motion is essentially two-dimensional in the transverse plane since the transverse vel-
ocity is several orders of magnitude greater than the axial velocity.

(iv) Particle ¯ux into the active layer in the right quadrant is assumed equal to particle ¯ux into
the plug ¯ow region in the left quadrant; therefore only half of the two-dimensional domain
is considered in the calculations (Ferron and Singh 1991).

(v) The particle ensemble behaves as a continuum and the ¯ow properties; for example solids
concentration, granular temperature, etc. are a continuous function of position. However,
because the density at the free surface is discontinuous, a velocity condition from an exper-
imental data is imposed at the free surface.

(vi) For simplicity the granular temperature in the active layer is assumed isotropic in the radial
direction but varies along x.

The equations of motion describing such ¯ows have been developed (Lun et al. 1984; Johnson
and Jackson 1987) by considering conservation of mass, momentum and (motional) energy as

@r
@t
�r � �ru� � 0 �1�

r
Du

Dt
� rgÿ r � P �2�

3

2
r
D ~T

Dt
� ÿr � qPT ÿ P : ruÿ g �3�

In these expressions u is the bulk velocity, r=Wrp is the bulk density, W is the solids volume
fraction and P is the total stress tensor, which consists of both static and kinetic (streaming and
collisional) components. Johnson and Jackson (1987) have de®ned the term qPT as the ¯ux of
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pseudo-thermal energy and can be related to the granular temperature, TÄ, a measure of particle

kinetic energy. g is the dissipation of pseudo-thermal energy due to inelastic collision of par-

ticles. The constitutive expressions needed for the evaluation of these terms follow Johnson and

Jackson (1987) and are listed in appendix A.

Owing to the fact that material ¯ow in a rotary drum may not be as rapid as ¯ow in chutes,

which therefore, may result in long term duration of particle interactions, the motivation was to

seek thin ¯ow approximation (boundary layer) to the governing equations and apply the stress

tensor expressions developed for [2] and [3] to describe active layer ¯ow. To fully exploit its use

and to be consistent with experiment, the governing equations were cast into primitive variables

as:

@u

@x
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which can further be normalized with the appropriate scales to establish justi®cation for the

boundary layer approximation. The coordinates appropriate to the active layer may be de®ned

in Cartesian coordinates with ®eld variables taken with respect to x and y (®gure 1) where, from

assumption (iv), 0 < x < L and 0 < y <ÿD. The characteristic parameters used to normalize

[4]±[7] are (see for example Savage and Hutter 1989)

�x; y� � ��L�x�; �D�y��

�u; v� � �gL�1=2u�; D
L
�gL�1=2

� �
v�

� �
�8�

�Pxx; Pxy; Pyy� � �cos xD��P�xx; P�xy; P�yy�:

After this procedure (appendix B) the continuity and the momentum equations for active layer

¯ow were obtained (dropping the asterisk) as

@u

@x
� @v
@y
� 0 �9�

u
@u

@x
� v

@u

@y
� sin xÿ sin x

@Pxy

@y
�10�

@Pyy

@y
� 1 �11�

For this thin ¯ow, the y-wise momentum equation becomes the overburden, that is, Pyy=
R D
0 W

dy. Provided that the thin ¯ow assumption is satis®ed, [9] and [10] su�ciently describe ¯ow

within this layer. However, the solution procedure for these equations can be considerably sim-

pli®ed if the thin ¯ow assumption is further explored by developing the momentum equations in

an integral format (see for example Schlichting 1979).
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3. INTEGRAL EQUATION FOR ACTIVE LAYER MOMENTUM CONSERVATION

It can be readily shown that by considering a control volume in the active layer (®gure 2) the
system of partial di�erential equations [9] and [10] can be reduced to a single ordinary di�eren-
tial equation (see for example Holman 1990) as

r
d

dx

�H
0

�u2 ÿ udu�dy
� �

dx� dud
dx

�H
0

ru dy

� �
dx �

X
Fx �12�

which involves integration of certain parameters across the layer. It might also be noted that
insofar as no attempt is made to describe the stress tensor nor net forces acting on the control

Figure 2. Schematic showing scaling variables employed in normalizing governing equations and con-
trol volume for active layer ¯ow ®eld.
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volume, [12] can be considered identical to one that describes conventional ¯uids; for example
the Blasius problem (see, Schlichting 1979). In [12], ud, the velocity at the transition from the
active layer to the plug ¯ow, is a function of radius only (ud=ord) but the radius for this lo-
cation requires knowledge of the active layer depth, dx, at the distance, x, from the apex. Hence
from the geometry of ®gure 2 one can show that

r2d � �Lÿ x�2 � �OB� dx�2

cos y � �OB� dx�
rd

�13�

where OB is the distance from the cylinder centerline to the bed surface.
As was shown in [12], the net force takes on the form of the x-component of the stress gener-

ation tensor therefore,

r
d

dx

�D
0

�u2 ÿ udu�dy
� �

dx� dud
dx

�D
0

ru dy

� �
dx � �ÿPxy dx� Pxx dxrg sin x dx�D �14�

Implicit in this equation is the assumption that the top face of the control volume is a free sur-
face for which, perhaps, a null shear stress can be applied. The second term in [14] would, in
¯uid ¯ow, be equal to the hydrostatic pressure according to Bernoulli's equation. For granular
¯ows on an incline, however, this term may be assumed equivalent to the driving force parallel
to the inclined plane (subtended by the angle of repose) and hence may be equated to the over-
burden pressure in the x-direction, that is

dud
dx

�D
0

ru dy � Pxx �15�

which, therefore, results in an expression that describes the active layer ¯ow as

r
d

dx

�D
0

�u2 ÿ udu�dy � �rg sin xÿ Pxy�D �16�

The ®nal task in this development before proceeding with a solution is to derive appropriate ex-
pressions for the shear stress acting over the bottom surface of the control volume namely Pxy.

As mentioned earlier, the shear stress is a combination of frictional and collisional and the
extent of each contribution would be determined by operational conditions, that is the rotation
rate, degree of ®ll of the cylinder, etc. Two regimes of operation, slumping and rolling, can be
isolated for the analysis.

3.1. Slumping bed

When the rotation rate is low or collisions between particles are constrained and if @u/@y>0
then the shear stress is strictly static which is simply given as

Pxy � rg cos x tanj �17�
where j is the static angle of repose which is not vastly di�erent from the friction angle. This
situation occurs when the active layer is not shearing by inter-particle collision. The correspond-
ing integral-momentum equation describing slumping is, therefore,

r
d

dx

�d
0

�u2 ÿ udu�dy � �rg sin xÿ rg cos x tanj�d �18�

which upon rearrangement, becomes

d

dx

�d
0

�u2 ÿ udu�dy � g cos x�tan xÿ tanj�d: �19�

Thus, if x>j, the bulk bed is accelerated or it is damped when x<j. When x=j, it can be
said that the ¯ow is indeterminate (Kanatani 1979).
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3.2. Rolling bed

From bed behavior experiments (Henein et al. 1983a), one can say that the rolling bed, with
its continuous surface renewal, is a situation where kinetic stress may be the driving force for
material ¯ow. Because the material in the active layer is continuously shearing in this mode,
collisional stress may dominate transfer of momentum. In this case all aspects of granular ¯ow
come into play and the shear stress may be deduced from the constitutive equations described in
appendix A. Many forms of the shear stress expressions exist in the literature, however, they are
all variants of the equation ®rst proposed by Bagnold (1954) which is given as

Pxy � ÿcirp dp
du

dy

� �2

�20�

where ci is the Bagnold's constant (see, for example Campbell and Gong 1986). [20] may be re-
arranged to resemble stress/strain rate relationship as

Pxy � C
0 du

dy
�21�

where an ``apparent'' viscosity, C', may be de®ned as a function of dilation, f(rp, dp, ep, W, TÄ).
This apparent viscosity may then be related to the properties of the bed according to the re-
lationship (see appendix A):

C
0 � ÿrp dpg2�W� ~T1=2 �22�

where g2(W) is a term in Lun et al. (1984) expression relating the ``viscosity'' to material proper-
ties such as coe�cient of restitution (ep), Z{=(1 + ep)/2}, the solids fraction, W, and is given in
the appendix A as

g2�W� � 5
���
p
p
96

1

Z�2ÿ Z�go �
8

5
�3Zÿ 1� Z

�2ÿ Z� �
64

25

Z�3Zÿ 1�
�2ÿ Z� �

12

p

� �
W2go

� �
�23�

Near identical expressions for granular viscosity have been derived by Gidaspaw (Gidaspaw and
Huilin 1996). By inserting the shear stress term into [16] the momentum conservation equation
takes on its ®nal form

r
d

dx

�d
0

�u2 ÿ udu�dy � �r sin x�d� g2�W�rp dp ~T1=2 du

dy
: �24�

It might be noted that, although the kinetic energy equation [7] has not been included explicitly
in the derivation of the integral momentum equation it does appear implicitly since its solution
is required in order to obtain the granular temperature in [24].

4 . SOLUTION OF THE INTEGRAL MOMENTUM EQUATION IN THE ACTIVE

LAYER OF A ROLLING BED

[24] represents the integro-di�erential equations for the bulk material ¯ow in the bed's active
layer for which a ``suitable'' form of the velocity pro®le is required to solve. In choosing this
velocity function, it is necessary to account for the boundary conditions (i) at the free surface,
(ii) the interface between the active layer and the plug ¯ow region of the bed, and also to satisfy
the requirement for continuity at the point where the solution in the active layer matches the
plug ¯ow solution. In addition, material balance at any arbitrary x-position on the free surface
plane must be enforced. Hence a necessary constraint to e�ect any solution to the ¯ow problem
is to invoke assumption (iv) that is

ral

�dx
0

ual�x; y�dy � rpf

�R
rx

upf �r�dr �25�

Recognizing that the bulk density is simply the particle density times the solid fraction
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(r = rpW), and that, within the plug ¯ow region, u = or, [25] simpli®es to (dropping the sub-
script al for velocity in the active layer)

Wal

�dx
0

u dy � Wpf

�R
rx

or dr �26�

which, after integration of the right hand side gives

Wal

�dx
0

u dy � 0:5Wpfo R2 ÿ OB � dx
cos y

� �2
" #

�27�

where u = ual(x, y) = f(y) is the active layer velocity function which includes the actual active
layer depth. At the mid-chord, the global material balance for the entire cross-section should be
satis®ed and since the subtended angle there (namely, y) goes to zero, a reduced form of [27] is
equally applicable as

Wal

�D
0

u dy � 0:5Wpfo�R2 ÿ �OB� D�2� �28�

Two conditions can be invoked to iteratively obtain active layer depth and velocity that is either
by ensuring that the mass ¯ow in the active layer is balanced at each x-position from the apex,
using [27] (which was used as the convergence criterion), or by ensuring that global mass in the
cross-section is balanced at mid-chord using [28].

Experiments (Boateng and Barr 1997) have indicated that a parabolic pro®le would be su�-
cient to describe the shape of the velocity pro®le in the active layer and hence three constraints
may be su�ciently imposed as boundary conditions. These are described in the following two
subsections.

4.1. Free surface constraint

Following the ¯uid ¯ow analogy, the most obvious choice for a free surface boundary con-
dition is to allow the shear stress there to vanish and thus force the shear rate to zero (name-
ly du/dy = 0). The boundary condition for slow and high density granular ¯ows with free
surface has been thoroughly discussed by Johnson et al. (1990) and also by Nott and Jackson
(1992). They admit that the adoption of the stress-free surface condition for such ¯ows gives
rise to di�culties unless the free surface is considered to be at an in®nite location. Although
they could circumvent this physically unrealistic condition by alternative solution approaches all
required knowledge of the magnitude of the combined shear stress because of the non-zero den-
sity there. In order to render their calculations strictly analytical they sought asymptotic sol-
utions to the governing equations that matched small density values, typically, W=0.001 at that
in®nite location. Despite its slow rate of convergence the asymptotic solution approach worked
for certain inclined angles of the chute ¯ow problem they solved. However, in the case of rotat-
ing drums, particularly for low and moderate drum speeds studied in the experimental campaign
that underlies this work (Boateng and Barr 1997), this is even more di�cult to apply. The
reason is attributed to the fact that the ¯ow is not as fully developed as in chute ¯ow situations
and that the weight of the particles at the exposed surface must be supported within it. The den-
sity there is comparatively greater than that encountered in rapid chute ¯ows thereby resulting
in even severe discontinuities (breakdown of the continuum assumption). Therefore the bound-
ary condition imposed at the free surface was not that of null shear stress but rather the exper-
imentally determined velocities (Boateng and Barr 1997). Qualitatively, the surface velocity for a
bed of material of a given particle size might be expected to depend on the rotation rate, the
drum size, and the degree of ®ll. In order to take advantage of the available data a correlation
was developed relating these variables as us=CooR, where the constant of proportionality, Co,
was related to the degree of ®ll in percent, $, and the rate of rotation of the cylinder in inverse
second, o, namely Co=f($, o). The relationship between Co, at mid-chord, and the ®eld vari-
ables for two materials are shown in ®gure 3.
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4.2. Constraints for plug ¯owÐactive layer interface

As was shown in ®gures 1 and 2 this interface involves both the zero velocity line (no slip),
where ¯ow reversal within the active layer occurs (distance a from the free surface) as one con-
straint; and the ``yield'' line where bed particles resume the rigid lattice structure of the plug
¯ow region (located at distance d from the free surface) as another constraint. The velocity con-
dition at the point of ¯ow reversal is simply u = 0 while at the yield line continuity of ¯ow
requires that ud=upf. The relationship between a and d may be established by considering the
Coulomb yield criterion, Pxy=Pyy tan x which is present at all ¯ow conditions. Since tan x is
constant, it implies that the ratio between the shear and normal stresses at the interface must be
constant. Because the normal stress is the weight of the overlying burden, the number of par-
ticles that the material can sustain between the zero velocity (no slip) line and the yield line
depends on the packing and must, therefore, be related to the degree of ®ll. Hence, the ratio a/d
indirectly represents the yield criterion and must be a constant which is related to percent ®ll
(drum loading). Following our thin ¯ow analogy, this is analogous to boundary layer thickness
being equal to some percentage of the free stream. Also implicit in this development is that the
stress exerted by ¯owing granules on the passive region is equal to the limiting stress in the ma-
terial as it approaches the interface. Gauthier (1991) gave a relationship of a = 0.75d for a
small batch rotary drum with Ottawa sand as bed material. However, ®gure 3(c) suggests a
value ranging between 0.7 and 0.9 with the lower values for low ®ll levels and tending to higher
values as degree of ®ll increases. Although considerable scatter is present in the data, partly
attributed to end-cap e�ects in the experimental campaign, the accuracy was considered su�-
cient for the modeling work.

Inclusion of these constraints into a parabolic velocity pro®le provides the semi-analytical ex-
pression used to describe the velocity ®eld (appendix C) that is

u

ud
� k� ka2 ÿ kd2 � a

ad2 ÿ a2d
y� kÿ kaÿ a

ad2 ÿ a2d
y2 �29�

where k is the ratio between the velocity parallel to the bed surface at each x-position along the
surface and the velocity at y = dx; that is k = CoR/rx. Within the bounds 0.7 < a/d < 0.9 the
velocity pro®les in the active layer can be cast into the general form,

u

ud
� k� a

0
1

y

d

� �
ÿ a

0
2

y

d

� �2
�30�

where the a'i are the coe�cient terms in [29] and are given in table 1. The velocity pro®les
obtained using [30] and depending on k values would mimic pro®les that respond to rotational
rate.

In addition to the velocity pro®les other parameters that are necessary in order to proceed
with the solution of the momentum integral equation [24] are the density and granular tempera-
ture in the active layer. Density in the active layer will normally di�er from that in the plug
¯ow region because of increased dilation which accompanies high shear rates. In the plug ¯ow
region the solids volume concentration, Wpf, can be assumed constant and equal to the maximum

Figure 3. Experimental data for normalized surface velocity (C0=us/oR) for (a) polyethylene pellets,
(b) long grain rice; (c) a/d measured through a glass end-cap.
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shearable solids concentration, W*, that depends on the material packing and which, in turn,
depends upon the material properties, for example particle shape. For close packing of spherical
particles, W* can be as high as 0.7 but as for many practical situations it ranges from 0.59±0.62
(Savage 1989). Within the active layer itself, the solids fraction can be expected to vary from
that of the plug ¯ow value (1Wpf) at the interface to some smaller value, Wo, at the free surface
because of interdependency with the granular temperature. Values of the solid fraction should,
in theory, be determined as part of the solution of the granular ¯ow equations. However, a con-
stant value was used in the ensuing calculation because experiments (Boateng 1993) have indi-
cated that the dilation in the active layer does not vary within 5% range and therefore little
error would be incurred when a uniform value for W is assumed. The same experimental work
indicates that there is granular conduction into the bed. Therefore the pro®le for the granular
temperature follows the same parabolic behavior as the velocity pro®le; nonetheless, it is di�cult
to reliably establish boundary conditions for it. Although this is not far fetched to do, it having
been done in chute ¯ow calculations, the arguments put forward to explain the granular tem-
perature behavior at a free surface (see for example Ahn et al. 1991) may be inapplicable to
rotary cylinders as explained earlier because only one component of TÄ could be measured.
Therefore it was assumed that the granular temperature varied only as a function of x-position;
that is, it varies only along the chord length and was computed as part of the solution of the
¯ow problem.

Substituting the velocity pro®le [30] into the momentum conservation equation (the left hand
side of [24]) and carrying out the integration yields the result:

d

dx
r
�dx
0

�u2 ÿ udu�dy � r
d

dx
�f�k2 ÿ k� � 1

2 �2ka 01 ÿ a 01�

� 1
3 �a 01 ÿ 2ka 01 � a 02� ÿ 1

4 �2a 01a 02� � 1
5 a 02gd�u2d �31�

which can be substituted again into [24] to give

r
d

dx
��b0 � b1k� b2k2�d�u2d � rg sin xd� rp dpg2�W� ~T1=2 du

dy
�32�

where the coe�cients, bi, are the results generated when the terms in a'i are expanded for the
various values of a/d (table 1). Again, recognizing that r = rpWal, [32] becomes

d

dx
�b0 � b1k� b2k2�d � g sin x

u2d
d� dp

g2�W� ~T1=1

Waldud
�33�

where ud, the velocity in the active layer depth at distance x from apex, can be shown to be
ud=ÿo(OB + d). Upon separation of the variables, [33] becomes�d

0

d

dx
��b0 � b1k� b2k2�d�dd �

�x
0

g sin x
u2d

d� dp
g2�W� ~T1=2

Waldud

" #
dx �34�

Assuming a null active layer thickness at the apex; that is d = 0 at x = 0, and recognizing that
f d dd = d2/2 this expression takes on the quadratic form

1
2 �b0 � b1k� b2k2�d2 ÿ g sin x

u2d
dxÿ dp

g2�W� ~T1=2

Walud
x � 0 �35�

Table 1. Coe�cients for the velocity function

a/d a'1 a'2 b0 b1 b2

0.75 3.00ÿ 2.333k 4.00ÿ 1.333k 0.170 0.422 0.033
0.80 4.00ÿ 2.250k 5.00ÿ 1.250k 0.177 1.875 0.000
0.85 5.67ÿ 2.177k 6.67ÿ 1.177k 0.093 6.768 ÿ0.601
0.90 9.00ÿ 2.111k 10.0ÿ 1.111k 0.833 ÿ0.487 ÿ0.593
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which may be solved for the active layer depth. Once the latter is obtained, it can then be substi-
tuted into [30] to obtain the velocity distribution in the two-dimensional calculation domain.
Consequently the velocity normal to the bed surface can be obtained by solving [1], the continu-
ity equation.

The only remaining task at this point is to bring the energy equation into the solution pro-
cedure, that is to allow the granular temperature to respond to the ¯ow [35]. The iterative tech-
nique employed to do so follows the sequence: (i) the average granular temperature, in the
active layer, is guessed; with this guessed value, terms such as g2(W) are computed; (ii) as a ®rst
approximation, [35] is temporarily solved for the active layer depth, dx, by neglecting the quad-
ratic term; (iii) with this value of dx, the velocity is determined and substituted into [35] to
obtain an improved value for dx; (iv) using the improved dx, the velocity pro®le is obtained and
the total mass ¯ow through the active layer is determined for the current x-position; (v) this
mass ¯ow is then compared with that in the plug ¯ow region at the same location [27]. The pro-
cedure is repeated each time bringing with it an improved estimate of the granular temperature,
until the mass ¯ow through the active layer balances the mass ¯ow in the plug ¯ow region to
within 0.1%. Once this is accomplished the model moves on to the next x-position. Because the
¯ow problem is assumed symmetric calculations are performed only up to the mid-chord. In
performing these calculations the number of surface nodes was varied from 12 for smaller drum
sizes (<0.5 m I.D.) to 24 for larger sizes (r1 m I.D.). The procedure showed good numerical
stability but the number of iterations required to obtain convergence, typically 50, was found to
depend fairly strongly on the initial estimate supplied for the granular temperature.

5 . MODEL VALIDATION AND APPLICATION

The ¯ow model was validated against data obtained using a 1 m O.D. (96.4 cm I.D.) by 1 m
long rotary drum and reported in (Boateng and Barr 1997). The results from the validation
e�ort begin with ®gure 4 which shows velocities in the active layer, at mid-chord, for polyethy-
lene pellets, rice grains and limestone at various operating conditions. These indicate a generally
good agreement with experimental data, especially for lower ®ll levels and high rotation rates

Figure 4. Predicted and measured velocity as function of radial position at mid-chord of 1 m I.D. drum
for the following particle type and operating conditions: (ia) polyethylene pellets, 29% ®ll, 1 rpm, (ib)
polyethylene pellets, 29% ®ll, 5 rpm; (iia) rice grains, 15% ®ll, 4 rpm, (iib) rice grains, 15% ®ll, 5 rpm;

(iiia) limestone, 3.3% ®ll, 3 rpm (a) 3.3% ®ll, (iiib) limestone, 8.5% ®ll, 8.5%, 3 rpm.
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where rapid motion of particles are encountered. Discrepancies between model and experiment
are only apparent in higher ®ll and low rotation rate test; the former can be attributed to the
fact that, for deep beds, the granular temperature might not be uniform throughout the active
layer at each x-position as assumed. At low shear rates, however, the ¯ow is not entirely rapid
and frictional stresses may dominate momentum generation thereby resulting in a breakdown of
the collisional contribution to the stress tensor applied in the granular ¯ow model. Nonetheless,
for an approximate solution employed, the predictions are considered to be good. Although not
precisely known, the coe�cient of restitution for both the rice grains and the limestone are low
compared with polyethylene. Based on estimated values of the coe�cient of restitution (0.5 for
rice and 0.6 for limestone) calculations performed using these materials do show good results as
presented in the ®gure. It is apparent here that, with respect to predicting the gradients of the
pro®les, the accuracy of the predictions are comparable to those obtained for polyethylene pel-
lets. The predictions compare well with experimental data, despite the fact that the coe�cient of
restitution for these materials was poorly characterized.

Active layer depths predicted at mid-chord are summarized in table 2 and compared with ex-
perimental data on polyethylene. Also presented are the results from an equilibrium model of
Pershin (1988). Although Pershin performed his experiments at rotation rates close to critical
values where material in the drum centrifuges that is the rotational Froude number Fr = o2R/
g 4 1, his analysis involved energy minimization that is based entirely on frictional stresses.
Gauthier (1991) also carried out measurements of active layer depth for sand (10.4 mm par-
ticles) in a 0.37 m I.D. drum and used these results to generate an empirical expression relating
the depth of the active layer at mid-chord, D, to the bed depth at mid-chord, H, and drum
speed, N. It is apparent from the table that 15% disparity exists between both models and the
current one. However, both Gauthier and Pershin carried out their measurements by ®lming
through a glass end-cap. A more detailed measurement obtained using a ®bre optic technique
and well away from end e�ects (Boateng and Barr 1997) suggests that the end-cap essentially
reduces active layer depth by about 10±20%.

Having validated the model it was employed to predict the ¯ow conditions for three rotary
drums of various dimensions namely, 0.41 m I.D., applicable to pilot kilns, 1 m I.D. drum,
which represents the experimental apparatus used in the model validation, and a 2.5 m I.D.
drum, typical of medium size industrial processing kilns. The discussion of these predictions
begins with the active layer velocity pro®les and shown in ®gure 5. At 2 rpm, the surface vel-
ocity at mid-chord increases from 15 cm sÿ1 for the 0.41 m I.D. drum, to 40 cm sÿ1 for the 1 m
I.D. drum, and then to 100 cm sÿ1 for the 2.5 m I.D. industrial size drum. At 5 rpm the respect-
ive velocities shift to a greater magnitude, namely 40 cm sÿ1, 75 cm sÿ1, and 200 cm sÿ1. The
results suggests a direct proportionality between surface velocity and drum size given the same
operational conditions. This linear relationship responds to the boundary condition, C0=us/oR,
which in turn, is related to the rotational Froude number. It might be recalled that Fr is a

Table 2. Model validation; AL depth at mid-chord, (D/H)� 100%

Degree of ®ll Rotational rate Experimental Predicted Pershin's model
% rpm % % %

3.3 2.05 28.57 33.24 8.33
3.07 34.42 34.55 8.92
4.13 36.74 35.48 10.10
5.22 37.76 36.17 11.87

8.5 1.88 27.04 30.58 6.22
2.87 28.48 32.15 6.64
3.98 29.70 33.31 7.91
5.08 31.12 34.15 8.75

15.0 2.14 23.57 28.18 4.57
3.07 25.00 29.67 4.90
4.11 26.29 30.86 5.89
5.11 27.40 31.72 6.55

29.0 0.92 16.92 20.09 2.53
2.83 18.57 25.24 3.03
5.15 22.77 27.97 4.29
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necessary scaling parameter for rotary drums and might be used in conjunction with the model
to estimate particle velocities at the free surface. Further details on the e�ect of drum speed and
particle velocity can be revealed by considering the pro®les at mid-chord as shown in ®gure 6. It
might be noticed from the ®gure that the shape of the pro®le changes from approximately linear
to parabolic with increased rotation rate. This shows the in¯uence of shear rate on granular vis-
cosity. One can presume that, since energy is not self sustaining in granular ¯ows, increasing
drum speed provides the necessary agitation to change the pro®le shape from what might be
perceived as representing a Newtonian-type ¯ow to a more dilatant-type ¯ow. This is evident
from the fuller pro®les that develop as shear rate increases with rotational rate. Although not so
profound this culminates to active layer growth; a result which is consistent with experimental
data. Data from the experimental campaign (Boateng and Barr 1997) have shown that, when ®ll
is held constant, the active layer thickness grows up to a well de®ned limit with increased ro-
tational rate. After this limit, however, further increase in rotation rate does not draw additional
material into the active layer, rather, the velocity pro®les change to maintain ¯ow continuity. It
is worth noting that Couette granular ¯ow models (Johnson and Jackson 1987) also suggested a
critical speed, beyond which more material will decline to enter into the shear zone.

Another aspect of granular ¯ow which impacts signi®cantly on material processing operations
is the granular temperature and the kinetic di�usion associated with smaller scale particle mix-
ing. Because of assumption (vi) we discuss only the gradients in the ¯ow direction as depicted in
®gure 7. These results indicate that (also see, Boateng and Barr 1997), the granular temperature
increases rapidly at the onset of ¯ow, peaks at around mid-chord, then dissipates in the ¯ow
direction. It is also expected that the granular temperature will increase with kiln speed and this
is also shown in ®gure 7. As is seen here, the trends do follow a general granular ¯ow behavior
irrespective of the magnitude of the numerical values. The self-di�usion coe�cient for equally
sized particles (Ferron and Singh 1991) follow directly the same trend as the granular tempera-
ture. This self-di�usion coe�cient given by the expression (Savage 1993; Hsiau and Hunt 1993)

Figure 5. Predicted velocity in active layer as function of distance from apex for the following drum
sizes and operating conditions: (i) 2 rpm, 12% ®ll; (ii) 5 rpm, 12% ®ll (a), (b), and (c) are respectively,

0.41 m, 1 m, and 2.5 m drum diameters.

.

BOUNDARY LAYER MODELING OF GRANULAR FLOW 511



~D � dp
�������
p ~T

p
8�ep � 1�Wg0�W� ; �36�

is inversely proportional to the coe�cient of restitution of particles and solid concentration, but

directly proportional to the square root of the granular temperature. Therefore, when the ma-

terial type and solids concentration are held constant, di�usion rates can be expected to increase

with granular temperature and rotation rate (®gure 8). This result is of special importance to

material processing in rotary drums for the simple reason that, if the bulk velocity in the ¯ow

direction is considered convective, then it is the small scale particle di�usion which is responsible

for mixing and hence thermodynamic temperature uniformity.

The results presented thus far have been con®ned to the e�ects of rotation rate and degree of

®ll on the particle ¯ow. However the e�ects of the physical properties of the material (material

type), speci®cally the solids concentration, coe�cient of restitution and the angle of repose, on

Figure 6. Predicted velocity pro®les (i) and active layer depth (ii) at mid-chord as a function of ro-
tational rate; (a), (b) and (c) are drum diameters of 0.41 m, 1 m drum, and 2.5 m.

Figure 7. Predicted granular temperature as function of rotational rate for the following conditions: (a)
0.41 m drum, 12% ®ll; (b) 2.5 m drum, 12% ®ll.
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¯ow characteristics were also explored using the model. Since the solids concentration is a

measure of dilation and hence, the state of ¯uidization or expansion of the bed burden, it might

be expected to signi®cantly in¯uence the ¯ow behavior. The model predictions shown in ®gure 9

indicate that, as the dilation of the bed increases, the quantity of the material entering the

sheared region, that is the active layer also increases as is expected. The increased content of the

active layer which is induced by dilation is re¯ected in an increase in the depth of the shear

layer and is su�cient to cause a decline in mean shear rates present. The overall e�ect of this

modest dilation (10% increment) is responsible for an increase in material di�usion by tenfold.

Bearing in mind that most chemical reactions take place in the active layer the e�ect of density

on material processing should not be underestimated.

On the coe�cient of restitution, one can say that it is a measure of the particle's ability to

retain kinetic energy during collisions and hence higher values will tend to reduce energy dissipa-

tion due to inelastic collisions (Mohan et al. 1997). Therefore, for a ®xed concentration, the

granular temperature is likely to increase as is depicted in ®gure 10. Sensitivity analysis indicates

that increasing the coe�cient of restitution by 10 percentage points (in the lower range of ep)

results in over 40% increase in granular temperature. However, this e�ect signi®cantly reduces

at the higher range of ep, that is near the perfect elastic limit (ep=1). The angle of repose di�ers

only slightly from the friction angle of the material. Therefore material with higher angle of

repose is expected to increase energy dissipation due to inelastic collision and frictional contri-

bution to the stress generation will dominate ¯ow and slumping of the bed will result.

Figure 8. Predicted kinetic di�usion as function of rotational rate for the following conditions: (a)
0.41 m drum, 12% ®ll; (b) 2.5 m drum, 12% ®ll.

Figure 9. E�ect of solids concentration on the ¯ow character in a 0.4 m drum operating at 12% ®ll and
2 rpm: (a) velocity pro®les, (b) active layer depth, and (c) kinetic di�usion.
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6. MODEL PREDICTION FOR FLOW IN THE TRANSVERSE PLANE

To this stage the focus has been on the development of means to predict the extent of the

active layer along with various ¯ow parameters within this region. In doing so full use has been

made of the relative thinness of the active layer (compared with the plug ¯ow region) in order

to develop the ¯ow expressions on the basis of the techniques developed for other thin ¯ows.

However, the application most useful to industry is the prediction of the ¯ow ®eld for the trans-

verse plane in its entirety that is, inclusive of the plug ¯ow region. It is only by doing so that

the ¯ow ®eld can be incorporated into existing thermal models (Barr et al. 1989) which have

been, necessarily, based on the assumption of complete mixing over the transverse plane; that is

well mixed bed. To predict the transverse ¯ow ®eld we ®rst establish the extent of the plug ¯ow

region by determining the domain of the active layer using the model described. Then the grid

for the computational domain is re-meshed to include the plug ¯ow region where material fol-

lows rigid lattice motion. To be consistent with the latter, particle velocities in the plug ¯ow

region are computed as a linear function of the rotational rate and radius. Within the active

layer itself, the components of the velocity vector normal to the bed surface, although small,

were computed using a backward-di�erence formulation of the continuity equation.

Figure 10. E�ect of coe�cient of restitution on ¯ow character in a 0.41 m drum operating at 12% ®ll
and 2 rpm: (a) di�usion, (b) granular temperature; (c) e�ect of static angle of repose.

Figure 11. Predicted velocity ®eld for 0.41 m drum cross-section with polyethylene as granular material
operating at 12% ®ll and 2 rpm.
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Model predictions for a 0.41 m I.D. drum operating at 12% ®ll ($=12) and 2 rpm
(o= 0.21) are presented in ®gure 11. As this example shows, the continuous furnishing of ma-
terial from the plug ¯ow region into the active layer (and vice versa) can be captured by the
model. By following a single particle in its journey through the active layer one can observe
that, after emerging from the plug ¯ow region near the apex, the individual particle will acceler-
ate downward in a stream of particles which form the active layer. For low shear rates where
collision contribution to momentum transport is small particles follow ®xed paths practical
rami®cations of which is segregation or de-mixing (Boateng and Barr 1996a). At high shear
rates particle contact time is short and granular temperature increases; this results in increased
di�usion; its practical rami®cation is that each particle has an equal chance of being anywhere
in the active layer thereby resulting in bed mixing followed by temperature uniformity in heat
transfer modeling (Boateng and Barr 1996b; Boateng et al. 1997).

7 . CONCLUSIONS

As part of an e�ort to improve our predictive capabilities for rotary kiln processes a math-
ematical model based on the continuum ¯ow of bulk solids was developed to predict the velocity
®eld established by particle motion in the transverse plane of a rotating cylinder. The model is
simpli®ed by adopting the thin ¯ow analogy for conventional ¯uids and is capable of determin-
ing, in addition to the velocity, important ¯ow parameters such as granular temperature and
¯ow-induced kinetic di�usion.

It can be concluded that the dilation factor exhibits a strong dependence on the ¯ow behavior
and that the relationship between the shear rate and the shear stress varies with respect to di-
lation. By increasing the rotation rate velocity pro®les can develop into shapes which mimic,
progressively, pseudoplastic (root), Newtonian (linear), and dilatant (quadratic) ¯ow behavior.
These are accompanied by systematic increase in granular temperature and hence radial di�u-
sion. The analysis shows that the material's coe�cient of restitution does not dramatically in¯u-
ence the bulk velocity of particles but, rather, increases kinetic energy by increasing small scale
velocity ¯uctuations as re¯ected in the increase in the granular temperature and increased kinetic
di�usion. The foregoing analyses indicate that di�usion (radial or axial) and hence ¯ow-induced
kinetic mixing would be high in industrial rotary kilns operating at elevated rotational rates and
at low degrees of ®ll. This condition will pertain to greater active layer depths which are necess-
ary for material processing in continuous rotary kiln reactors provided the residence time for
the particular process is not compromised.
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APPENDIX A. GRANULAR FLOW EQUATIONS OF MOTION

In the equations of motion ([1]±[3]) the kinetic contribution to the stress tensor may be given
following Lun et al. (1984) as
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the equation having been derived by considering pair distribution function in collision theory. S
is the deviatoric stress which is expressed as

S � 1
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3 uk;kdij �38�
where dij is the kronecker delta; that is, dij=1 for i = j, dij=0 for i$ j. The ¯ux term for
pseudo-thermal energy may also be evaluated using (Johnson and Jackson 1987)
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with the dissipation of energy due to inelastic collisions expressed as
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In the forgoing, mb is the bulk ``viscosity'' for perfectly elastic particles and Zmb is the bulk ``vis-
cosity'' for inelastic particles. l is the granular conductivity and li is the granular conductivity
for inelastic particles. Z is the average value between the coe�cient of restitution of particles, ep,
and that of a perfectly elastic particle which has ep=1. m is the shear viscosity which depends on
the mass, m, and particle diameter dp. mi is therefore the shear viscosity for inelastic particles.
Finally, g0 is the radial distribution function at contact during collisions which relates the solids
volume fraction, W, and the maximum shearable volume fraction, W*. Pertinent de®nitions are
summed up as follows:
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The apparent viscosity term C' employed in the momentum equation is hence derived in terms
of the coe�cient of restitution of the particles, solids concentration, particle size, and granular
temperature if it is recalled that the shear stress term in the momentum equation is represented
as
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Hence, C'= C/2 may be deduced from the constitutive equations for slightly inelastic particle
collisions (Lun et al. 1984) where
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Z�2ÿ Z�g0 1� 8

5
ZWg0

� �
1� 8

5
Z�3Zÿ 2�Wg0

� �
� 6

5
mbZ �43�

Therefore, C' can be written as

C
0 � ÿrp dpg2�W� ~T1=2 �44�
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Similarly,
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where g0, g1, g2, g3, g4 and g5 follow Johnson and Jackson (1987) as follows:
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APPENDIX B. NORMALIZATION OF THE EQUATIONS OF MOTION

In order to apply boundary layer solution to the active layer ¯ow it is important to perform an
order of magnitude analysis so as to establish which of the terms in the equation will vanish for
thin ¯ows. This was done by normalizing the equations with the following scaling parameters:

�x; y� � ��L�x�; �D�y��

�u; v� � �gL�1=2u�; D
L
�gL�1=2

� �
v�

� �
�Pxx; Pxy; Pyy� � �rg cos xD��P�xx; P�xy; P�yy�

�50�

Substituting these parameters into the equations of motion would yield the following:

(i) Continuity equation:

@��gL�1=2�u�
@�L�x� � @�

D
L �gL�1=2�v�
@�D�y� � 0 �51�

which may be rearranged to give
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�gL�1=2
L

@u�

@x�
� �gL�

1=2D
DL

@v�

@y�
� 0: �52�

Upon recognizing that

�gL�1=2
L
� DL

�gL�1=2D � 1 �53�

the continuity equation becomes

@u�

@x�
� @v

�

@y�
� 0: �54�

(ii) The x-wise momentum equation:

r�gL�1=2u� @��gL�
1=2u��

@�L�x� � r
D
L
�gL�1=2

� �
v�
@��gL�1=2u��
@�D�y� � r sin xÿ @�cos x�P

�
xx

@�L�x� ÿ @�cos xD�P
�
xx tan x

@�D�y�
�55�

which, upon rearranging, yields

r
�gL�1=2 � �gL�1=2

L
u�
@u�

@x�
� r

D
L �gL�1=2 � �gL�1=2

D
v�
@u�

@y�
� rg sin xÿ rg cos x

D
L

@P�xx
@x�
ÿ rg cos x tan x

@P�xy
@y�

:

�56�
By making the substitution ee= DD/L, and dividing by rr g, the equation reduces to

u�
@u�

@x�
� v�

@u�

@y�
� sin xÿ E cos x

@P�xx
@x�
ÿ sin x

@P�xy
@y�

�57�

(iii) The y-wise momentum equation:

Similarly, the y-wise momentum follows as

r�gL�1=2u� @
D
L �gL�1=2
� �

v�

@�L�x� �
�
D
L
�gL�1=2

�
v�
@ D

L �gL�1=2
� �

v�

@�D�y� � ÿrg cos x

ÿ rg cos x tan xD
L

@P�xy
@x�
ÿ r cos xD

D

@P�yy
@y�

�58�

which is rearranged to give�
r�gL�1=2 D

L

�gL�1=2
L

�
u�
@v�

@x�
�
�
r
D
L
�gL�1=2 � D

LD

�

v�
@v�

@y�
� rg cos xÿrg cos x tan xD

L

@P�xx
@x�
ÿ rg cos x

@P�yy
@y�

: �59�

and is subsequently reduced to

e u�
@v�

@x�
� v�

@v�

@y�

� �
� ÿ cos xÿ E cos x tan x

@P�xy
@x�
ÿ cos x

@P�yy
@y�

�60�

Recognizing that the active layer depth, even at mid-chord, is only a few particles away the
terms involving e may be small compared with the rest. Therefore, as e4 0, the equations of
motion become
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@u�

@x�
� @v

�

@y�
� 0

u�
@u�

@x�
� v�

@u�

@y�
� sin xÿ sin x

@P�xy
@y�

�61�

@P�yy
@y�
� 1

Appendix C. Velocity Pro®le For Active Layer Flow

The velocity function employed and the appropriate boundary conditions are as follows:

u � a0 � a1y� a2y
2

y � a; u � 0

y � d; u � ud

y � 0; u � us

�62�

upon substituting the boundary conditions a set of algebraic equations evolve as

us � a0

0 � a0 � a1a� a2a2

ÿud � a0 � a1d� a2d
2

�63�

which can be reduced to two equations i.e.,

a1ad� a2a2d � ÿusd

a1ad� a2ad
2 � ÿ�us � ud�a

�64�

and for which a1 and a2 represent

a1 � ÿusd
2 � �us � ud�a2
ad2 ÿ a2d

a2 � usdÿ �us � uda

ad2 ÿ a2d

�65�

Substituting a0, a1, and a2 into the velocity pro®le yields

u � us � us�a2 ÿ d2� � uda2

ad2 ÿ a2d
y� us�dÿ a� ÿ uda

ad2 ÿ a2d
y2: �66�

It may be recognized that us=C0ooR and udd=oorx, and hence us can be expressed as a ratio

us � C0R

rx
ud � kud �67�

which, upon substitution into the velocity function yields

u

ud
� k� ka2 ÿ kd2 � a

ad2 ÿ a2d
y� kÿ kaÿ a

ad2 ÿ a2d
y2: �68�

For example, if aa = 0.75dd is substituted into the preceding equation, then the velocity pro®le
will take on the form
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u

ud
� k� �3ÿ 2:33k� y

d

� �
ÿ �4ÿ 1:33k� y

d

� �2
�69�

or

u

ud
� k� a 01 y

d

� �
ÿ a 02 y

d

� �2
�70�

as given in the text.
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